《Nature》子刊收录宣武医院CTA研究,AI重塑临床流
【作者】网站采编
【关键词】
【摘要】近日,《Nature 》子刊《Nature Communications》在线刊发了题为《Rapid vessel segmentation and reconstruction of head and neck CTA using 3D convolutional neural network》的科研论文(IF=12.121)。该论文由首都医科
近日,《Nature 》子刊《Nature Communications》在线刊发了题为《Rapid vessel segmentation and reconstruction of head and neck CTA using 3D convolutional neural network》的科研论文(IF=12.121)。该论文由首都医科大学宣武医院卢洁教授团队与数坤(北京)网络科技有限公司共同研究发布。论文第一作者为傅璠博士、通讯作者为卢洁教授。
该研究首次利用3D卷积神经网络设计了一个可实现头颈CTA血管分割的后处理系统,能够自动除去骨影像,并完成头颈CTA血管重建。通过这样的途径,该系统一定程度上重塑了头颈CTA临床路径。
通常而言,头颈CTA检查需要患者进行两次CT扫描,但在该模型的辅助之下,只需一次增强扫描,患者便能获得可用于重建的影像结果。同时,在长达两年的研究周期中,AI重建的精度与准确度也随着训练的推进而不断趋近于完美,逐渐能与资深医师相当。
作为发病率高、死亡率高、复发率高、医疗负担高的全球性疾病,卒中等脑血管病患者达千万级别。 对头颈CTA临床路径进行创新性突破,及其背后的临床价值是该研究成果被《Nature》子刊收录的重要原因之一。
此外,该论文的研究过程也体现了人工智能不断成长提高的过程——练就一个有效的模型并非一蹴而就,这是一个循序渐进的过程。
千万级患者量的临床需求
最新全球疾病负担研究(Global Burden of Disease Study,GBD)显示,我国总体卒中终生发病风险为39.9%,位居全球首位,这意味着中国人一生中每5个人约有2个人会罹患卒中。此外,卒中也是我国疾病所致寿命损失年的第一位病因。《2019中国卫生健康统计提要》数据显示,2018年我国居民因脑血管病致死比例超过20%,这意味着每5位死亡者中至少有1人死于卒中。
全球而言,2019年3月11日,《Lancet Neurology》杂志发布的相关数据,2016年,仅卒中患病人数就为8010万,是全球第二大死亡原因。
缺血性卒中以及多种脑血管疾病诊疗中,头颈CTA检查是常规检查手段。然而,日益增加的检查量与有限CTA医师之间的矛盾,使得医院对于患者的需求应接不暇。科室工作压力逐渐增大,患者也许等待较长时间才能完成CTA检查预约及报告获取。
基于卷积神经网络的深度学习算法或能解决这一矛盾,自人工智能的洪流席卷医疗领域以来,许多医疗科技企业、医院学者纷纷尝试用AI的方式重塑CTA检查流程。提高CTA 检查效率、提高诊断准确率,其可能带来亿万患者的获益——这正是卢洁教授团队选择头颈CTA作为研究对象的重要因素之一,亦是全球医疗发展向善的趋势。
量变到质变,AI优化临床路径
经过多年发展,人工智能介入冠脉CTA的能力已经在实践之中得到验证,大量三甲医院已经上线了数坤科技等AI企业研发的“AI+CTA”产品。但相比于冠脉CTA,头颈CTA的重建过程显得更为复杂,其中的难度提升来源于CT影像之中头颈血管解剖复杂以及骨显像带来的干扰。
“由于拍摄头颈CT时无法忽略颅骨部分,而颅骨密度高,在CT图像上会以与造影剂类似的高亮方式呈现,数值也非常接近。因此,医生必须使用一些特殊的方法将血管与颅骨区分出来。”数坤科技临床研究院负责人郭宁解释到。
具体而言,为消除颅骨显像对于重建的影响,医生往往会要求患者进行两次CT扫描,第一次不注射造影剂,第二次注射造影剂。在第一次CT扫描之中,能够显像的只有拥有高密度的颅骨部分,而第二次显像则能同时包含颅骨与血管。在进行两次扫描之后,对其结果进行图像减影,减去两次影像中均为高亮显示的颅骨及其它部分,剩下的便是重建需要的血管影像。
实际之中,这样的操作常常会遇到很多问题。首先,这种方式对于患者的配合度要求非常高,患者两次扫描的位置必须匹配,也不能移动,否则减影效果会有所欠缺。其次,两次CT检查无疑会给予患者更多的辐射剂量,虽然剂量仍然在安全范围之内,但容易引起患者的担忧。
AI介入后,头颈CTA的检查流程由此发生了较大的改变。将减少一次CT扫描,为患者带来更好的就医体验,而重建影像耗费的时间也将由此大幅降低。
超亿次血管勾画验证,AI实现颅内细小血管精准分割
文章来源:《中国卫生统计》 网址: http://www.zgwstjzz.cn/zonghexinwen/2020/1021/405.html